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Summary

The paper gives a survey of analyses of diallel cross experiments
carried out in block designs. It is assumed that the genotype effects are
fixed while the block effects are random. The variance-covariance matrix
of the random terms of the considered linear model is related to the
structure of the randomization model. The statistical analysis is based
on the so called intra- and inter-block analyses and on the combined
analysis.

1. INTRODUCTION

The paper deals with the diallel cross experiments. This kind of
experiments is commonly performed by geneticists who are interested in
selecting lines and strains of plants or animals for further breeding.
Observations are made on the offspring of the crosses of pairs of inbred
lines. The main effect of a given line is called its general combining
ability (g.c.a.). The interaction between two lines is called their
specific combining ability (s.c.a.). The reader is referred to the paper
by Griffing (1956) for more detailed discussion.

Here we consider a situation in which p inbred lines are chosen and
certain crosses are made among them. Griffing (1956) discussed four types
of diallel crossing systems. In types I and II the p parental lines are
also included; in types III and IV they are omitted. In types I and III
the reciprocal crosses are included, i.e. both, the cross in which the
i-th line is the male line and the j-th line is the female line and the
reciprocal cross with the j-th as the male line and and the i-th as the
female line. In types II and IV the reciprocal crosses are omitted.

Griffing (1956) gave the analysis of the above four types of diallel
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crossing systems only for data obtained in a randomized complete block
design. In the present paper a generalization of some Griffing’'s (1956)
results connected with the diallel crossing systems concerns the
experimental design only. In particular the analysis of interesting
genietical characteristics based on experimental data obtained in a proper
connected block design is given. It is assumed that genotype effects
determined by the diallel crossing systems are fixed. In our approach to
the analysis of block experiments the blocks are considered as being a
random sample from a finite population of blocks, i.e. the block effects
are treated as random. Their statistical properties result from the
applied scheme of randomization, which is described in. the next section.

The paper is divided into two parts. In the first part, the basis of
the analysis of the randomization model for the block designs is given.
The problems presented in this part are then adopted to the analysis of
diallel cross experiments. It composes the second part of the paper.

It may also be interesting to mention some other papers concerning
similar problems connected with the analysis of diallel crosses. In
particular Ceranka and Mejza (1987, 1988a, 1988b, 1988c) give the analysis
of genotypes for all types of Griffing’s classifications for experiments
laid out in balanced incomplete block designs. The analysis in these
papers is based on another mixed model, in which the genotype effects are
fixed and block effects are random, but such in which blocks represent a
random sample from an infinite population of blocks. This situation is
less realistic in diallel cross experiments than that considered in the
present paper. For the classical fixed linear model the similar problems
were considered by Ceranka and Kielczewska (1984, 1985, 1986a, 1986b).

2. A RANDOMIZATION MODEL FOR BLOCK DESIGNS

Planning of experiments and inference problems are of fundamental
importance for every experimenter using experiments in his corner research
work. Usually inferences from experiments are based on the linear model
of variables observed in the experiment. There are two approaches to the
model building for experimental observations.

In the first approach the form of the model is assumed a priori,
usually without taking the actual randomization into account. Such
an approach can be questioned because the amount of data necessary to
verify the assumptions is wusually beyond the reach of the experimenter
in collecting them.

In the second approach, the model is strictly connected with the
given experiment, i.e. with the structure of its experimental material and
with the method of assigning treatments to the units of the material, the
so called scheme of randomization. In the paper we consider a two step

randomization, i.e. randomization of blocks and randomization of plots
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within blocks. Let a population of units (set of available potential
units) be divided into b blocks of size k each. Let v denote the
number of treatments.

Suppose that randomization is performed as described by Nelder (1954)
by randomly permuting labels of blocks within a total area of them and by
randomly permuting labels of units within the blocks. Furthermore, it is
assumed that the randomizations of units within the blocks are among the
blocks independent and that they are also independent of the randomization
of blocks.

In our modeling the usual unit treatment additivity (as it is
understood by Nelder, 1965, and by White, 1975) is assumed. Practically we
assume that the variation of the responses among the available
experimental units does not depend on the treatments applied.

Last assumption connected with the modeling concerns the so called
technical errors. Namely, it should be noticed that when observing the
responses of the units in reality, any observation may be not precise
because of an error arising from variations in experimental technique and
in various extraneous factors, also perhaps caused by measuring
instruments or by the observer. We assume, as usual references, that the
technical errors are uncorrelated, with the zero expectation and a
constant variance, independent of the treatments in particular.

Finally, adopting the above additivity assumption that the treatment
applied on an experimental unit can change only the constant term in the
model, the model gets the form

y=Atr +Df3+n+e v (2.1)

where y is an nxl vector of observations(lexicographically ordered), A’
is an nxv design matrix for treatments, D’ is an nxb design matrix for
blocks, so that N=AD’ is the vxb incidence matrix of the block design, ¥
is an vxl vector of treatment parameters, 3 is a bxl random vector of
block effects, n is an nxl vector of unit errors and e is an nxl
vector of technical errors.

The randomization leads to the following statistical properties of
the random terms 3 and n in the model (2.1):

E(B) = 0, E(n) =0, E(MB’) = oa(I,- (1/b)1,1}), E(pn’)=0,
T ) ,
E(nn’) = a"(lbe (X, (1/k)1,11)),

where og denotes the variance of blocks, og denotes the variance of
units, Ia denotes an axa identity matrix, la denotes an axl vector of ones
and © denotes the Kronecker product of matrices.

It is assumed that E(e) = 0, E(ee’) = azln, a: stands for the
variance of technical errors, E(Be’) = 0, E(ne’) = 0. It will be also
assumed that 3, n and e are normally distributed.

The covariance matrix of the vector y is then equal to



Cov(y) = a:(n'n - (1/b)1a2) + o:(lbg (I~ (1/K)1,17)) + afxn.

The covariance structure of the model (2.1) is such as structure of
typical randomization model. Hence analysis appropriate for this kind of
models will be adopted (c.f. Nelder 1965, Houtman and Speed, 1983). In
this analysis the set of pairwise orthogonal projectors summing up to the
identity matrix plays an important role. In the considered case we have
P, =(1/n)11’, P, = (1/K)D'D - (1/n)1 2}, P, =1I - (1/k)D’D.

Let us note that riri = 'i’ Pipi' =zhO9UTs 1’ i=v0, 1,2, Hwi?s poe P1+
'2 = In.
Then the covariance matrix of the vector y can be written as
Cov(y) = ’o'o + 71'1 + rzrz (2.2)

where rosai. 71=ka: + oz, 72=03+ az. It means that a proper block

design has the orthogonal block structure (c.f. Nelder, 1965, Houtman and
Speed, "1983).

The variance components (so-called "strata variances") A and 7y
are usually unknown. In the situation such as the one considered in the
paper, the so called within stratum analyses can be helpful. The within
stratum f analysis is based on the model '

’f='f,' E(Yf)='tA'fv COV(Yf)=rfPf. £=0,1,2. (2.3)

The covariance matrices in the linear models (2.3) are of ranks
r(Po)=1. r(P1)=b—1, r(P2)=n—b, and such that Cov(yf)PfA'=rfPfA' for

each f, which, as can be proved (see for example Bailey, 1981,
Houtman and Speed, 1983, Rao and Mitra, 1971, Th. 8.2.1 with Corollary
3), are sufficient conditions for the BLUE’s of estimable linear

functions in the models (2.3) to be equal to the BLUE’s obtainable by the
simple least squares method based on the linear model

* * *

e = Py, E(yg)=P.A’v, Coviyy) = 7,1, f=1,2. (2.4)
Note that the normal equations for estimating the fixed effects of

model (2.4) have the form

ArfA':‘; = &Py (2.5)

e Afr‘t’,=qf, where A =AP.A’, Q,=AP.y, £=0,1,2.

The estimability of a function e’v within the f-th stratum can be
verified by the criterion c'A;Af=c' (cf. Rao and Mitra, 1971, Th. 7.2.1).

From the fact Af1=0 hold for f£=1.2 we have, that if a linear
function «e¢’rv is estimable in any of the two strata then it must be a
contrast, i.e. ©’1=0. On the other hand, the only functions estimable in
stratum 0 are those of the type c¢’v=(c’1/n)r’v, for any ¢ such that c’1=0.

If a function e’vr is estimable within the f-th stratum then its



BLUE zithin that stratum has the form (e’ tt)-e 2 £=¢ Aflrty with
var((c'r)t)=7f¢’Afc for £=0,1,2, where Af denotes genernli:ed inverse
of matrix Af.

Let us consider any contrast of treatment parameters c’r. This
contrast can be estimated only in one of the strata or in both strata. In
the first case, BLUE of this contrast is BLUE in the general model (2.1)

There are some problems with estimation of contrast in the second
case. It is known that the strata estimators are unbiased in the model
(2.1). To improve the statistical properties (to minimize variance) we can
use some methods of combining estimators (cf Khatri and Shah, 1974, 1975,
Bhatacharya, 1980). The methods of combining estimators utilize usually
the set of some contrasts called basic contrasts.

The analysis of model (2.1) is based on two strata. The first
stratum, connected fith the projector Pl' is called inter-block stratum.
2° is called intra-block
stratum. The latter stratum is practically the most important in the

The second, connected with the projector P

planning and analysis of the block designs.

In the analysis of variance in both strata certain contrasts, called
basic, play an important role. Let ci and wo be eigenvalues and
eigenvectors, respectively, of the matrix Az with respect to the matrix
R, i.e. A

diagonal elements equal to the number of replications. The eigenvectors

2'i=£in'i' i=1,...,v, where R is a diagonal matrix with the

w, can be chosen to be mutually orthogonal. Since A21=0, the last (say)
eigenvector w_ may be taken equal to (1//;)1. It may be shown that all
the eigenvalues are in the range from 0 to 1. It is convenient to order
the eigenvectors so that these which correspond to the eigenvalues equal
to 1, g in number, are at the beginning and these with nonzero (less than
1) eigenvalues, v-g-1 in number, come at the end (cf Pearce at al., 1974).

For any block designs, contrasts of treatment parameters sit,
i=l,...,v-1, are said to be basic contrasts if si=Rvi. where 'i are
pairwise orthonormal eigenvectors of matrix ‘2 with respect to the matrix
R, i.e. wiRvi=l and 'in'i’=°' isi?=1,000,v-1, imi?

It can be proved (see Pearce et al., 1974, Mejza, 1985) that

(i) in the first stratum (inter-block) only these basic contrasts s’ v
are estimable which are defined by the eigenvectors 8+1' 8*2""’ L g
of the matrix A2 with respect to the matrix R, that correspond to the
nonzero eigenvalues of matrix Az;
(ii) the BLUEs of any of these contrasts are given by

~
’

- ’ i= -
siv = (l/zoi)viql 3 i=g+l,...,v-1 5

-~

and the variances of s{r are

~

var(s{t) = 71/£oi' i=g+1,...,v-1 y

where ¢ . = 1-¢_,
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(iii) all estimators B sit, i=g+l,...,v-1, are independently
distributed according to sit ~ N(sit. rllcoi).

Additionally, it can be also proved that:

(i) in the second stratum (intra-bleck) only these basic contrasts
.it are estimable which are defined by the eigenvectors '1"2"""v-1
of the matrix Az with respect to the matrix R,

(ii) the BLUEs of any of these contrasts are given by

] sit = (llci)vin. 3 W

and the variances of 'i' are

vnr(sit) = 72/5i » 18854 o0 gV=1y
(iii) all estimators sir, i=1,...,v-1, are independently distributed
according to sir ~ N(lit. '2/51)'

Any contrast of treatment parameters c’v can be expressed as c’'v =
v-1
)X disit. In this form two cases can be considered. The first one is such
i=1
that some of d1 are different from zero, i.e. diﬁo for i=1,...,8, and the

rest of d1 are equal to zero, di=0. i=g+l,...,v-1. The second situation is
such that e¢’'v is a linear combination of the basic contrasts sit,
i=l,...,v-1, but at least one of di’ i=g+l.,,,.v-1, is a nonzero
coefficient. The best situation is the first one. In this case the
estimator of e’'v is the BLUE in the model (2.1). Then the BLUE of e’y in
the model (2.1) is equal to BLUE of e’'r in the second stratum
(intra-block analysis). In the second case the first and the second
stratum estimators will be used to obtain a new, combined, estimator,
which possesses some desirable statistical properties. As was mentioned
previously the Khatri and Shah’'s (1974) method of combined estimators will
be recommended.

According to this method the combined estimator of c’vr has a form

~ v ~ -~ -~
c’r = igldisit +i=§ildi[(1-di)(sit - sl¥) + siv] % (2.6)
where
-l 2. %1 Rioad g xVghain * 43 i3
d;, = e, s,/{¢e; sz+e°i(n-b—v+3)[sl+i=§+l(sit - siv)% ;1(b-3)""},

where sy, 8, are the stratum mean squares for error.

The combined estimator (2.6) has uniformly smaller variance than the
estimator of c¢’v obtained in intra-block analysis only, provided b>3.

The analysis of data obtained in the considered design usually
contains the tests of general and particular hypotheses. The tests can be

obtained from the within stratum analysis of variance as given in Table 1.
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Tab.1. Analysis of variance for the stratum f.

Source of

d.f. S.8. E(S.S.)
variation
-
Treatments (in f) Vre SSTf VppZet T Afr
Error (in f) Voe SSEt Vee?e
A
Total (in f) ve SsY Pe¥p *+ T Afr

The symbols occurring in Table 1 denote SSYf = y’Pfy - the total sum
of squares, SSTf = Q'fAth - the treatment sum of squares, SSEf=SSYt—SSTf

- the error sum of squares, Vo= r(Af). ge= r(Pf), for the
f-th stratum, f=1, 2.

Under the assu-ptxon that the random terms of the linear model {2.T)

= Vv

Ve £ Ve

are normally dxstrzbuted it is easy to obtain an exact test (F-test) of
Of i Afr-o, f=],2.

Let us consider h independent contrasts of treatment parameters,

the hypothesis

cit. where ¢!1=0, for i=1,...,h. If we are interested in testing the
hypothesis Ho : C’'v=0, where C=[e1,...,cb], with r(C)=h, and all of the
contrasts c{t are estimable in the f-th stratum, then the appropriate
F-statistic is

Qjacc(c’azc) e’ aq,
= - (2.7)
4 SSEf/vEf
The F-statistic (2.7) under H: has the F-distribution with h and Vee
degrees of freedom.
For some of hypothesis, H: : €% = 0, two independent tests are

available, i.e. in the first and the second stratum. Then the combined

test can be used to improve the statistical properties of the stratum

tests. According to results obtained by Prasad and Subramanyam (1986) the

procedure based on Fisher’s method of combining tests can be recommended.
The statistic

z = -2log a.a (2.8)

172

is distributed as a 12 with 4 degrees of freedom, where al and a2 are the

significance levels of Ff given by (2.7).

3. ESTIMATION IN DIALLEL EXPERIMENT

3.1. Type I.

Let p denote the number of parental lines in all four types of
diallel crossing.

Let us consider the type I of diallel crossing, i.e. the genotypes
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obtained in a diallel crossing system including parents, one set of Fis
and reciprocal Fi.. The vector of genotype effects can be presented as v
seser¥

’
= [711.....7 ,....vpp] . The effect v, is assumed to be

ip prl J

Tij-""i”‘j’.ij"ij ’ i, = 1,2,...,p,

where u is the general parameter, ‘i(‘j) is the general combining
ability (g.c.a.) effect of the i-th (j-th) parent, 85 s is the specific
combining ability (s.c.a.) effect of the cross between the i-th and j-th
parents, such that 'iJS.Ji' and 'ij is the reciprocal effect involving
the reciprocal crosses between the i-th and j-th parents such that

L/ ST

In the paper the g.c.a always will be denoted by gi, s.c.a. - by sij
and reciprocal effect - by "ij'

As we have stated, the g.c.a., s.c.a. and reciprocal effects are
certain contrasts which can be defined as follows: gi=eir, $121.2,.050P

.1J=eij" 153m1,25%.,7D, ““and wij=dijr, i=j, 1,3=1,2,:..:.,p. This
convention is used in whole paper. Hence, it is sufficient to describe how

to form the vectors defining the above contrasts i.e., €5 eij’ dij'
Since the elements of the vector ¥ have a double index we introduce also

the double indexes of the elements of vectors c5 cij and dij'
respectively.
The (k,l1)-th element of the vector € ik,1=1,2,...,p, (defining

the gi) is as follows:

; i 2(p-1), k=1=i,
cy = o P-2, k=i or 1l=i,
kl 2p -2, otherwise.
The (k,l)-th element of the vector <550 ik,1=1,2,...,p, (defining

the s..) is as follows:
ii

c.. Sy (p-1), k=i or 1=i,

L [ (e-D)?, k=1=i,
111 P 1, otherwise.

The (k,l1)-th element of the vector °ij’ 1sdsks1=1,2, 009D 1m3,
(defining the sij) is as follows:

-2(p-1), k=1=i or k=1=j,
= .1__ p2_2p+2 , k=i and 1=j or k=j and 1l=i,
2p” |-(p-2), k=i or l=i or k=j or 1=j,
1, otherwise.

N

C. .
RS |

The (k,l)-th element of the vector dij' $adaiRod Bl i Basivem Prnd®ss
(defining the wij) is as follows:

1 1, k=i and 1=j,
di' = -1, k=j and 1l=i,
Jk1 0, otherwise.
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3.2. Type II.

Let us consider the type II of diallel crossing, i.e. the genotypes
obtained in a diallel crossing system including parents and one set of
Pis. The number of genotypes (treatments) is v=p(p+1)/2.

The vector of genotype effects has the structure

t=[rll....,7lp.722,...,r ""’Tpp]" where the effect 'ij is assumed to

2p
be expressed as

rij=y + gi+ gj+ sij’ i,=1,2,...,p, 1isj.
As in previous case we have that the (k,l1)-th element of the vector

ei, i,k,1=1,2,...,p, is as follows:

2(p-1), k=1=i,

) 3
C; B —r——— P-2 , k=i or 1l=i
ikl p(p+2) { -2, otherwiue.’

The (k,l1)-th element of the vector e.,., i,k,1=1,2,...,p, is as

ii
follows:
1 P;P"l)v k=1=i, i
Csa B -2p , k=i or 1= i
2 4 ¢ (p+1) (p+2) 2 otherwise. b
The (k,l1)-th element of the vector cij’ dls oKy 2852, siosinPor 126y vim a8
follows:
-2p, k=1=i or k=1=j,
1 @ ; x .
oL, = —— P +p+2, k=i and 1=j or k=j and 1=i,
gy (p+1) (p+2) -(p-1), k=i or 1l=i or k=j or 1l=j,
24 otherwise.

3.3. Type III.

Let us consider the diallel crossing of type III, i.e. the genotypes
obtained in a diallel crossing system including one set of Fis and
reciprocal Fis. The number of genotypes (treataments) is v=p(p-1), while
the vector of genotype effects now is presented as

t=[712,...,1 S By S eg b The effect Tij is assumed to be

’
Lpt <= ipl p,p-ll 2

expressed as

Tij = u + gi+ gj+ sij+ wij ’ 1) = 1,25.00,Py 1imj.

As in previous cases we have that the (k,l)-th element of the vector
€5 i,k,1 =1,2,...,p, has the form:

[+

1 {p-z. k=i or 1l=i,
i

= 2p(p-2)

kl -2, otherwise.

The (k,l)-th element of the vector cij’ digijslesll =01 72, 8. &opil 123, is

as follows:
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1 (7-2; g;‘»-a). ::: .ndl1;,1 orkk;.i .mli 1=,
[ = —‘TT el § =1 or l=j or k=j or =1,
By 2(p-1)(p-2 i i otherwise.

The (k,1)-th element of the vector dij' 1 sdo kol mid 5@y oro'einiDs i®j, is
as follows:

1 s k=i and 1=j,
diJ Lo -1, k=j and 1=i,
kl 0, otherwise.

3.4. Type IV.

Let us consider the. type IV of diallel crossing, i.e. the genotypes
obtained in a diallel crossing system including one set of Fia. The number
of genotypes (treatments) is in this case equal to v=p(p-1)/2. The
vector of genotype effects has the structure
"[712"""lp'rzz"'"sz""'fp-l,p].' The effect tiJ is assumed to be
expressed as usually i.e.,

'iJ = u o+ 310 ng 'ij' Ly dimad 38500 is Py $<¢5.
As in previous cases the (k,l1)-th element of the vector €5
i,k,1=1,2,...,p, is as follows
1 P-2, k=i or 1=i,
c = —mm—e = .
i p(p-2) -2, otherwise.
kl
The (k,1)-th element of the vector °ij' i,j.k,1 = 1,2,...,p, i<j, is
as follows
1 zp-Z;(p—3). k=i and 1= j,
L = -D(e=zy 1-(rp-3), k=i or 1=j
iJkl (p-1)(p-2) 2, .otherwise.’

Using the above vectors it is possible to obtain the intra- and the

inter-block estimators. As the final estimators in all cases we suggest to
use the combined ones.

4. TESTING HYPOTHESES

In the analysis of diallel crossing experiments the interesting
hypotheses concerning the g.c.a., s.c.a. and reciprocal effects can be
formulated as follows:

13 Ho gi = 0; for all s
2. Ho Bij= 0; for all 1,3,
3 Ho 3 gi = 0; for fixed i
4. B, : g.-g, = 0; "inj,



H '1J = 0; for fixed i,Jj,
H lij- 8, = 0;

: 'ij‘ 0; for all i,j,

H 'ij' 0; for fixed i,Jj,

9. Ho H '11- i1 =0,
where i,j,k,1 = 1,...,p.

The hypotheses 1 - 6 are testable in the all types of diallel
crossing systems. The hypotheses 7,8 and 9 are testable in the type I and
III only.

In the present paper, the combined test (2.8) is recommended. With

© 0 0o o

respect to the above, we need the significance levels of the appropriate
F-tests used to test the same hypothesis.

For testing the hypothesis 1 we have to construct matrix C
describing the independent contrasts. It can be noticed that each effect
g 1=1{...,p, is the contrast of the form eir. Taking into account the

relation E gi = 0, for constructing matrix € we can take any set of p-1

vectors <, defining 8 which is a set of independent contrasts. Then the
matrix € from (2.7) has, for example, the form C=[q1.ez....,cp_1]. Thus,
for the testing of hypothesis 1 we take the above matrix € and
F-statistics given by (2.7) for f = 1,2, assuming h=p-1. In the next step
we calculate the significance levels of Fl and Fz. which are later used in
a combined test (2.8).

For testing the hypothesis 2 we also have to construct matrix C
describing independent contrasts concerning the s.c.a. effects. From the
definition of s.c.a. it can be seen that each effect sij is the contrast
of treatment parameters of the form cijr. Thus, for the testing of
hypothesis 2 we take the matrix € and F-statistics given by (2.7) for f =
1,2, assuming h=p(p-1)/2 for type I and II or h=p(p-3)/2 for type III
and IV. In the next step we calculate the significance levels of F1 and
Fz. which are later used in a combined test (2.8).

For testing the hypothesis 7 we take F-statistics given by (2.7)
for f=1,2, the matrix € which is formed by p(p-1)/2 independent contrasts
describing reciprocal effects "ij’ and h=p(p-1)/2.

For testing 'the hypotheses 3 - 6, 8 and 9, we use the F-statistics
given by (2.7), and the combined test (2.8) as usually, assuming h=1.

5. AN EXAMPLE

For illustrating the theory given in this paper, let us consider, as
an example, an experiment carried out in a block design with v=10
genotypes resulting from the diallel crossing among p=5 inbred lines of
sunflower. In this experiment the seed yields was observed. The genotypes

were allocated in b=5 blocks of size k=4. Each genotype was replicated
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r=6 times in the experiment. The experimental results are presented in
Table 2.

Tab.2. Experimental results

Number of Number of treatments

block Seed yields
1 2 3 4

| 13.4 14.4 16.6 15.4
1 2 5 6

2 13.4 17.6 13.0 13.5
1 3 7 8

3 13.5 19.1 15.0 13.0
L 4 9 10

4 13.5 18.0 15.1 21.6
;| 5 7 9

5 14.0 13.1 18.4 17.1
1 6 8 10

6 14.6 15.6 13.9 16.6
2 3 6 9

7 18.0 20.3 15.9 18.4
2 4 7 10

8 18.0 18.0 19.0 17.2
2 5 8 10

9 18.7 13.2 13.9 18.0
2 7 8 9

10 20.5 20.4 15+ 1 18.1
3 5 9 10

| 20.8 14.2 20.1 20.0
3 6 7 10

12 20.7 17.0 20.7 20.1
3 4 5 8

13 16.6 18.8 14.1 16.2
4 5 6 7

14 1951 12°7 1771 21.5
4 6 8 9

15 21.4 19.0 17.2 19.0

The first step in the analysis is to calculate the sums of squares,
the mean squares and the F-ratio in the intra- and - inter-block analyses,
which are summarized in Table 3 and Table 4, respectively.

Tab.3. Intra-block analysis of variance

Source of Sum of Degrees of Mean

variation squares freedom squares F
Genotypes 183.01 9 20.33 12.89
Error 56.78 36 1.58 -

Total 239.79 45 3 =




Tab.4. Inter-block analysis of variance

Source of Sum of Degrees of Mean

variation squares freedom squares F
Genotypes 157.23 9 17.47 10.14
Error 8.61 5 1.72 -
Total 165.84 14 - -
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The next step is the estimation of effects of genotypes in intra- and

- inter-block analyses, which elements are arranged in the following

triangular tables:

- in the intra-block analysis the estimated genotypes effects are

J 1 2 3 4
i
5 14.95 18.38 19.54 18.54
2 14.19 15.65 18.97
3 14.80 17.36
4 18.91

— in the inter-block analysis the estimated genotypes effects are

. J 1 2 3 4

i

1 7.67 15.32 18.39 19.99
2 14.34 19.84 20.17
3 14.89 21.82
4 18.94

Now, using the formulae given above we can estimate the g.c.a.

s.c.a. effects. The estimates of g.c.a. effects are as follows:
- in the intra-block analysis they are

~ ~

8= 0.112, 85 -0.717, 83 -0.562, 84 1.167,

- in the inter-block analysis they are

~ ~ ~

8,= -2.7175, g5 -0.279, 83 0.692, 84= 2.362,

- in combined analysis they are

§l= 0.102, §2= -0.716, §3= -0.557, §4= 1.172.

The estimates of s.c.a. effects are arranged in triangular tables:

- in the intra-block analysis

and



i 2 3 4
i
8 ) -2.413 1.846 2.855 0.126
2 -1.510 -0.206 1.380
3 -1.132 -0.386
& -0.560

- in the inter-block analysis

1 2 3 4
: |
1 -3.920 1.234 3.338 3.268
2 -2,237 2.293 0.947
3 -3.628 1.626
4 -2.920

- in combined analysis

1 2 3 4
3y
1 -2.426 1.819 2.876 0.265
2 -1.516 -0.096 1.361
3 -1.153 -0.297
4 -0.580

As we can see from the results of this example, the combined
estimates are nearly the estimates obtained from intra-block analysis.
This follows from the fact, that main part of information about contrasts
of treatment parameters is included in intra-block analysis. In our
example more than 83X of information is contained in that analysis. Only
less than 17X of information is recovered from inter-block analysis by
combination of contrasts. The differences between intra-block estimates

and combined estimates information is

are more perceptible if more
contained in the inter-block analysis. In planning an experiment it is
desirable to have more information in intra-block analysis, but such a
situation is not always possible.

The comparison of the performances of the individual lines is of
considerable interest for a plant breeder. Inferences on them can be made
by testing some hypotheses 1-6.

For testing of hypothesis that there are no differences among the

g.c.a. effects (hypothesis 1), we calculate F1= 64.256 (a1= 2-10-3) and
7

F,= 13.985 (a,= 3:1075) and"hence” 'z 242,201 (p(xi/no) ='2"1077).
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For testing of hypothesis that there are no differences among the

s.c.a. effects (hypothesis 2), we calculate Fl= 28.711 (a1= 10‘3) and

F,= 12.347 (a,= 2-10°%) and hence =z = 45.020 (P(x2/H ) = 4-107%).
For testing of hypothesis 3, for example HO: gl= 0, we calculate

F1= 143,025 (a1= 7-10-4) and Fz= 0.316 (a2= 0.577) and hence z = 20.174,
3)

(p(x2/m ) = 5-10°
For testing of hypothesis 4, for example HO: gl- g2= 0, we calculate
Fl= 43.386 (a1= 10—3) and F2= 6,539 (az= 0.015) and hence z = 21,843
(p(x2/m ) = 2-107%).
For testing of hypothesis 5, for example HO: 8,:% 0, we calculate

F = 89.188 (a,= 2:107%) and F,= 46.158 (a,= 6-10"7) and hence z = 50.017
(p(xf/no) = 4-1079),
For testing of hypothesis 6, for example HO: 810" '13= 0. we

calculate F1= 6.167 (a1= 0.057) and F2= 1.937 (a2= 0.173) and hence

z = 9.293 (P(X3/H_) = 0.054).
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PEWNE UWAGI O ANALIZIE DOSWIADCZEN Z KRZYZOWANIEM DIALLELICZNYM
Z ODZYSKIWANIEM INFORMACJI MIEDZYBLOKOWEJ

Streszczenie

W pracy przedstawiono przeglad analizy dotyczacej krzyzZowania
diallelicznego dla dos$wiadczen zakladanych w ukltadach blokéw. Przyjeto
zalozenia, Ze efekty genotypéw s3 state, a efekty blokéw losowe. Macierz
kowariancji w modelu liniowym dotyczaca skiadnikéw losowych jest
uzalezniona od modelu randomizacji. Analiza statystyczna oparta jest na

wewn3gtrz i miedzyblokowej analizie wariancji oraz analizie kombinowanej.

Slowa kluczowe: krzyZowanie dialleliczne, ogélna zdolno$é¢ kombinacyjna,
efekt krzyzowania odwrotnego, specyficzna zdolnosé
kombinacyjna, odzyskiwanie informacji miedzyblokowej



